Reduction and Exact Solutions of the Ideal Magnetohydrodynamic Equations
نویسنده
چکیده
In this paper we use the symmetry reduction method to obtain invariant solutions of the ideal magnetohydrodynamic equations in (3+1) dimensions. These equations are invariant under a Galilean-similitude Lie algebra for which the classification by conjugacy classes of r-dimensional subalgebras (1 ≤ r ≤ 4) was already known. So we restrict our study to the three-dimensional Galilean-similitude subalgebras that give systems composed of ordinary differential equations. We present here several examples of these solutions. Some of these exact solutions show interesting physical interpretations. PACS numbers: 02.20.Qs, 02.30.Jr, 47.65.+a Mathematics Subject Classification: 76M60, 35C05
منابع مشابه
Traveling Wave Solutions of 3D Fractionalized MHD Newtonian Fluid in Porous Medium with Heat Transfer
In the present paper, we get exact solutions of Magnetohydrodynamic (MHD) of the fractionalized three-dimensional flow of Newtonian fluid with porous and heat transfer through the traveling wave parameter. The governing equations are produced dependent on established Navier-stokes equations which can be diminished to ordinary differential equation by wave parameter ξ=ax+by+nz+Utα/Γ(α...
متن کاملExact solutions for wave-like equations by differential transform method
Differential transform method has been applied to solve many functional equations so far. In this article, we have used this method to solve wave-like equations. Differential transform method is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Some examples are prepared to show theefficiency and simplicity of th...
متن کاملMagnetohydrodynamic Flow in Horizontal Concentric Cylinders
This article presents the exact solutions of the velocity and temperature fields for a steady fully developed magnetohydrodynamic flow of a viscous incompressible and electrically conducting fluid between two horizontal concentric cylinders. Our study focuses on the influence of the Hartmann number, Brinkman number, Péclet number and inner radius on the fluid temperature field, entropy generati...
متن کاملApplication of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation
In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...
متن کاملExact solutions of (3 +1)-dimensional nonlinear evolution equations
In this paper, the kudryashov method has been used for finding the general exact solutions of nonlinear evolution equations that namely the (3 + 1)-dimensional Jimbo-Miwa equation and the (3 + 1)-dimensional potential YTSF equation, when the simplest equation is the equation of Riccati.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005